Ligand binding to somatostatin receptors induces receptor-specific oligomer formation in live cells.

نویسندگان

  • Ramesh C Patel
  • Ujendra Kumar
  • Don C Lamb
  • John S Eid
  • Magalie Rocheville
  • Michael Grant
  • Aruna Rani
  • Theodore Hazlett
  • Shutish C Patel
  • Enrico Gratton
  • Yogesh C Patel
چکیده

Heptahelical receptors (HHRs) are generally thought to function as monomeric entities. Several HHRs such as somatostatin receptors (SSTRs), however, form homo- and heterooligomers when activated by ligand binding. By using dual fluorescent ligands simultaneously applied to live cells monotransfected with SSTR5 (R5) or SSTR1 (R1), or cotransfected with R5 and R1, we have analyzed the ligand receptor stoichiometry and aggregation states for the three receptor systems by fluorescence resonance energy transfer and fluorescence correlation spectroscopy. Both homo- and heterooligomeric receptors are occupied by two ligand molecules. We find that monomeric, homooligomeric, and heterooligomeric receptor species occur in the same cell cotransfected with two SSTRs, and that oligomerization of SSTRs is regulated by ligand binding by a selective process that is restricted to some (R5) but not other (R1) SSTR subtypes. We propose that induction by ligand of different oligomeric states of SSTRs represents a unique mechanism for generating signaling specificity not only within the SSTR family but more generally in the HHR family.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Somatostatin Decorated Quantum Dots Nanoparticles for Targeting of Somatostatin Receptors

Due to the unique optical properties like high brightness and narrow emission bands of Quantum dots, it is used as simple fluorescence materials in bio-imaging, immunoassays, microarrays, and other applications. To easy invistigate cell lines that overexpressed somtostatin receptors, somatostatin (SST) was conjugated with Quantum dots carrying PEG amine (Qdots-PEG-NH2). The conjugation of SST t...

متن کامل

Preparation, formulation and quality control of one step kit 99mTc- EDDA/HYNIC-Tyr3-Octreotide as a peptide radiopharmaceutical for imaging somatostatin receptor positive tumors [Persian]

The high expression of somatostatin receptors in many tumours, have made receptor scintigraphy with 111In-DTPA-Octreotide a widly used procedure in nuclear medicine. Despite its clinical success, some limitation and drawbacks of radiolabelling with 111In remain, especially those concerned with the cost, availability and physical decay properties of this radionuclide. 99mTc-EDDA/HYNIC-Tyr3...

متن کامل

Somatostatin Decorated Quantum Dots Nanoparticles for Targeting of Somatostatin Receptors

Due to the unique optical properties like high brightness and narrow emission bands of Quantum dots, it is used as simple fluorescence materials in bio-imaging, immunoassays, microarrays, and other applications. To easy invistigate cell lines that overexpressed somtostatin receptors, somatostatin (SST) was conjugated with Quantum dots carrying PEG amine (Qdots-PEG-NH2). The conjugation of SST t...

متن کامل

Preclinical study of a new 177Lu-labeled somatostatin receptor antagonist in HT-29 human colorectal cancer cells

Objective(s): Somatostatin receptor-positive neuroendocrine tumors have been targeted using various peptide analogs radiolabeled with therapeutic radionuclides for years. The better biomedical properties of radioantagonists as higher tumor uptake make these radioligands more attractive than agonists for somatostatin receptor-targeted radionuclide therapy. In this study...

متن کامل

Recombinant Expression of the Non-glycosylated Extracellular Domain of Human Transforming Growth Factorβ Type II Receptor Using the Baculovirus Expression System in Sf21 Insect Cells

Transforming growth factor beta (TGFβ1, β2, and β3) are 25 kDa disulfide-linked homodimers that regulate many aspects of cellular functions, consist of proliferation, differentiation, adhesion and extracellular matrix formation. TGFβs mediate their biological activities by binding of growth factor ligand to two related, functionally distinct, single-pass transmembrane receptor kinases, known as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 5  شماره 

صفحات  -

تاریخ انتشار 2002